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Abstract

The governing equation for the temperature response of small particles subjected to di�usive and radiative heat
transfer in a homogeneous medium is derived. The method used to derive this integro-di�erential equation is based

on an extension of Duhamel's superposition theorem and it is simpler than the Laplace-transform method
traditionally used. This approach is also used to discuss the origin of the history term, which is shown to be a
Riemann±Liouville±Weyl half-derivative of the temperature potential between the free-stream and the particle

surface. This observation is used to derive the scaling of the unsteady and the quasi-steady contributions for
harmonic perturbations of the background temperature ®eld. We identify a scaling number SR, which is a
normalized dimensionless frequency, that measures the importance of the history term as compared to the quasi-

steady di�usion and radiation contributions. The relevance of the scaling analysis for turbulent ¯ows is
discussed. 7 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

There are many engineering applications where the

unsteady heat and/or mass transfer to/from a small

particle plays an important role. These applications

include solid and liquid fueled ¯ames, particle dryers,

industrial separators, and many others systems where

either high-frequency temperature variations of the

surrounding ®eld occur or the particle is suddenly

injected into a temperature ®eld that di�ers from the

particle initial temperature. In these situations, an ad-

ditional heat transfer contribution caused by the evol-

ving temperature pro®le around the particle may
become relevant to the correct determination of the
particle temperature behavior. This work is concerned

with the relative scaling of the unsteady and the quasi-
steady conduction terms, and the determination of
conditions where the unsteady (or history ) term is of
relevance.

Michaelides and Feng [1] derived the energy
equation for a particle moving in a non-uniform tem-
perature ®eld in the limit of in®nitesimal PeÂ clet �Pe �
RepPr� and Biot �Bi � ha=kp� numbers.1 The starting
point of their derivation was the realization that the
solution for the heat transfer problem due to a step

change in temperature presents a term involving the
error function. This fact motivates the study of the
unsteady conduction term and to relate this term to

the Basset or history drag term appearing in the par-
ticle equation of motion for unsteady Stokes ¯ows.
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The derivation in [1] closely followed the method used
by Maxey and Riley [2], who derived the equation of

motion for a small particle moving in a non-uniform
velocity ®eld. Their method consisted of Laplace-trans-

formation of the Unsteady Di�usion Equation (UDE)

for the near-®eld formulation, where all the convective
terms are neglected a priori. The history drag and con-

duction terms appear from the inversion of the term
with a fractional exponent in the resulting Laplace-

space algebraic equations. The integral form of the his-

tory terms appears as a consequence of the application
of the Convolution Theorem in the inversion pro-

cedure.

The method used by Maxey and Riley [2] and
Michaelides and Feng [1] is standard in the litera-

ture for reducing the UDE, a partial di�erential
equation, to a linear integro-di�erential equation [3±

6]. This method requires that most of the algebraic

derivation be performed in Laplace-space. For this
reason, the integral-transform methods often obscure

the origin of individual terms and their relationship
with the original partial di�erential equation (PDE).

We present here an alternative derivation of the

energy equation that shows that the history term is
a consequence of the fractional (or fractal) nature

of the UDE in a semi-in®nite medium. We will
show that not only the unsteady conduction term is

represented by a fractional derivative in time, but

also that any unsteady di�usion process occurring
in a semi-in®nite medium is characterized by a frac-

tional di�usional ¯ux. This characteristic of the
UDE in a semi-in®nite domain is used to derive the

relative scaling of the unsteady and quasi-steady
conduction terms.

Section 2 presents an alternate derivation of the

history term that does not employ integral trans-

formations, but instead employs the Duhamel's
Superposition Theorem. The relevance of this

method is that there is no need to perform al-
gebraic operations in transformed space, since the

entire derivation is performed in physical space. In
the same section, it is shown that the kernel of the

history term matches exactly the de®nition of a Rie-

mann±Liouville±Weyl half-derivative. The identi®-
cation of the fractional nature of the history term

is important not only to ®nd a general solution for
the case of a uniform but time-dependent back-

ground temperature ®eld [7], but also to establish

the existence of a fractional scale in time for any
di�usion process occurring in a semi-in®nite domain.

This observation also has important consequences
for the study of anomalous di�usion processes [8].

Section 2 also presents a direct method for solving

the UDE in semi-in®nite domains. The method pre-
sented here is based on the use of fractional derivative

operators. The relevance of Fractional Calculus
methods in the analytical formulation of di�usive

[7,9,10] and viscoelastic damping [11±13] problems is

that a concise and generic formulation that often leads
to the solution of the governing equations is generated.

Nomenclature

a radius of particle
c speci®c heat capacity
CR dimensionless radiation coe�cient

kam total absorption coe�cient
Q heat transfer rate
q heat ¯ux in radial direction

q heat ¯ux
r radial coordinate measured from the center of

the particle

T temperature
hTi mean temperature level Tm�0�
t time

Greek symbols
am thermal di�usivity of the medium
k thermal conductivity

l � rmcm=rpcp

Z Kolmogorov length scale
y dimensionless temperature potential, �

�Tp ÿ Tm�=hTi

s Stefan±Boltzmann constant
t transmissivity or dummy variable of inte-

gration

O angular frequency of harmonic temperature
®eld

Subscripts
m related to the medium
p related to the particles

r at position r

Superscripts
V volumetric

� related to unit temperature jump

Diacritics

Ã , � dimensionless

Ä related to the medium in the absence of par-
ticles

- due to the presence of the particles
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The Fractional Calculus methods also allow the direct
scaling of individual terms in the equations, without

resorting to transformed-space algebra.
Section 3 addresses the relative scaling of the history

and quasi-steady conduction terms for a harmonically

oscillating background temperature ®eld. This particu-
lar background temperature ®eld is of special interest,
because the history term contribution is represented by

the simplest functional form that does not asymptote
to zero for long times. The analysis in Section 3 is con-
®ned to a purely di�usive heat transfer problem.

Quasi-steady, linear radiation e�ects are included in
the formulation of the heat transfer problem in Section
4, as suggested in [9]. Finally, in Section 5, the
equation originally derived in [1] for a non-uniform

temperature ®eld is re-derived without resorting to
Laplace-transformation of the UDE.

2. The origin of the history term

The objective of this section is to derive a governing
equation for the heat transfer from a small sphere in

an in®nite medium. The small, rigid, highly conductive
sphere is suspended in a medium that is characterized
by a uniform but time-dependent background tempera-

ture ®eld. The non-uniformity of the spherically sym-
metric temperature ®eld is only due to the presence of
the particle. A non-uniform background temperature

®eld is considered in Section 5. In the linear limit of
Pe40, the total temperature ®eld is composed of two
separate parts:

Tm�r, t� � ~Tm�t� � �Tm�r, t�, �1�
where the tilde stands for the unperturbed or back-

ground temperature ®eld and the over bar stands for
the perturbed temperature ®eld of the medium m. The
perturbed temperature ®eld is the temperature ®eld

that results from the presence of the particle.
The partial di�erential equation that governs the dif-

fusive heat transfer in the medium m with a uniform

but time-dependent volumetric heat source is

@Tm

@ t
� amr 2Tm � ~qV

rmcm

: �2�

The boundary and initial conditions to describe the

transient heat transfer in the medium that is initially in
thermal equilibrium with the particle p of radius a are

Tm�r, 0� � ~Tm�0�, �3�

�Tm�r, 0� � 0, �4�

�Tm�1, t� � 0, �5�

Tm�a, t� � Tp�t�, �6�

�
rpcpa

3

�
dTp�t�

dt
� qin � �qin � ~qin

� km
@ �Tm�r, t�

@r

����
r�a
� ~qin: �7�

The particle temperature equation (7) suggests the div-

ision of the problem into two distinct contributions,
one from the perturbed ®eld and other from the unper-
turbed ®eld. Eq. (2) is thus rewritten as

@ �Tm

@ t
� @

~Tm

@ t
� amr 2 �Tm � ~qV

rmcm

�8�

The contribution from the unperturbed problem is

given by equating the second terms on both sides of
Eq. (8). In order to determine the perturbed heat ¯ux
input due to the presence of the particle, the associated

problem de®ned by the ®rst terms on both sides of Eq.
(8) is considered

@ �Tm

@ t
� amr 2 �Tm, �9�

with

�Tm�1, t� � 0, �10�

�Tm

ÿ
a, tr0�

�
� Tm�a, t� ÿ ~Tm�t� � Tp�t� ÿ ~Tm�t�

� DTm�t�, �11�

�Tm�r, 0� � 0: �12�

This problem can be solved for a generic DTm�t� by
use of Duhamel's superposition integral if the solution
for a unit-temperature jump between the surface tem-
perature and the far ®eld is known. Let the solution of

the problem for DTm�t� � 1 be �T
�
m �r, t�: Duhamel's

Superposition Theorem then gives the following sol-
ution for a generic DTm�t�:

�Tm�r, t� �
�t
0

�T
��r, tÿ t�d

�T�a, t�
dt

dt: �13�

The perturbed problem is thus reduced to the determi-
nation of the temperature pro®le that results from a
unit-temperature jump at the surface. De®ning the

variables Y�r, t� � r �Tm�r, t�=a �Tm�a, t�, x � r=a, and
t � amt=a

2, the associate problem for the unit-tem-
perature jump is reduced to
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@Y�x, t�
@t

� @ 2Y�x, t�
@x 2

, �14�

Y�x, 0� � 0, Y
ÿ
1, tr0�

�
� 1, Y�1, t� � 0: �15�

The solution of problem (Eqs. (14) and (15)) is well-
known, and gives the following expressions for the
temperature distribution and heat transfer in terms of

the original variables

�T
��r, t� � a

r
erfc

�
rÿ a����������
4amt
p

�
, �16�

@ �T
��r, t�
@r

� ÿ a

r 2
erfc

�
rÿ a����������
4amt
p

�

ÿ 2a

r
������������
4pamt
p exp

"
ÿ �rÿ a� 2

4amt

#
:

�17�

At the surface of the particle, the heat ¯ux is given by

@ �T
��r, t�
@r

�����
r�a
� ÿ1

a
ÿ 1����������

pamt
p : �18�

Eq. (13) is then di�erentiated with respect to r and
evaluated at r � a yielding

@ �Tm�r, t�
@r

����
r�a

� ÿ
�Tm�a, t�

a
ÿ
�t
0

�
d �Tm�a, t�

dt

�
1���������������������

pam�tÿ t�
p dt: �19�

Eqs. (6)±(8) and (19) combined give an equation for
the temperature of a particle subjected to a time-

dependent, uniform temperature ®eld:

�
rpcpa

3

�
dTp

dt
�

km

�
Tp ÿ ~Tm

�
a

� km��������
pam
p

�t
0

d
�
Tp ÿ ~Tm

�
=dt��������������tÿ t�

p dt

�
�
rmcma

3

�
d ~Tm

dt
: �20�

The remarkable feature of Eq. (20) is that it relates the
temperature of the particle to the temperature of the
medium if the particle was not present. In dimension-
less terms, Eq. (20) is written as

dy
dt̂
� �lÿ 1�d

~T
�
m

dt̂
ÿ 3yÿ 3

����
l
p

r � t̂
0

�
dy
dt

�
1����������
t̂ÿ t
p dt: �21�

In Eq. (21), t̂ is the dimensionless time kmt=rpcpa
2, l is

the heat capacity ratio rmcm=rpcp, and y is the dimen-

sionless temperature potential �Tp�t̂� ÿ ~Tm�t̂��=hTi,
where hTi is the characteristic mean temperature level
between the particle and the medium, which can be

®xed as ~Tm�0� for small particles. The quantity ~T
�
m is

the dimensionless, unperturbed, time-dependent tem-
perature of the medium � ~Tm�t�= ~Tm�0��:
Eqs. (20) and (21) are valid in the limit of small PeÂ c-

let and Biot numbers and for uniform background
temperature ®elds. The small PeÂ clet number restriction

exists because the convective terms were neglected a
priori in the present analysis. The small Biot number
restriction exists because the temperature of the par-
ticle is assumed to be uniform throughout its volume.

Eq. (21) is used in the next section to determine the
relative scaling of the unsteady and steady contri-
butions to the heat transfer rate on a dilute cloud of

particles in a time-dependent background ®eld. This
equation is the heat transfer analog to Tchen's ®rst
equation of motion [6]�
1� a

2

�
dw

dt̂
� �aÿ 1�du

dt̂
ÿ w

ÿ
�������
9a
2p

r � t̂
0

dw

ds
ds�����������
t̂ÿ s
p � �1ÿ a�tpg

U0
,

�22�

where w is the relative velocity �vÿ u), a is the ¯uid-
to-particle density ratio, g is gravity acceleration vec-

tor, tp is a particle characteristic time given by
2rpa

2=9m, t̂ is the dimensionless time, v and u are the
dimensionless particle and ¯uid velocities, respectively.

Time, velocity, and length are non-dimensionalized by
the ¯ow characteristics tp, U0, and L, respectively. Eq.
(22) has been solved analytically in a recent paper [9].
The third term on the right-hand side of Eq. (21) is

analogous to the Basset or history term in the particle
momentum equation (the integral term in Eq. (22))
and, therefore, is denominated the history term in this

work.
Note that Eq. (22) has slightly di�erent coe�cients

than Eq. (21). The a=2 term appearing on the left-hand

side of Eq. (22) is a virtual mass coe�cient that arises
from the non-spherical pressure distribution around
the particle in the Stokes equation. Since we assumed
uniform temperature distribution for the background

®eld, the heat transfer problem here is spherically sym-
metric and this term has no parallel in Eq. (21). The
last term on the right-hand side of Eq. (22) is a combi-

nation of the hydrostatic pressure distribution (buoy-
ancy) and the weight of the particle. This term also
presents no parallel in the heat transfer formulation.

It is important to note the functional form of the
kernel of the history (integral) term in Eqs. (21) and
(22). The kernel, which appears from the direct appli-
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cation of Duhamel's Superposition Theorem, has
exactly the same form of the Riemann±Liouville±Weyl

half-derivative [14]:

d1=2�t̂�
dt̂

1=2
� 1���

p
p

� t̂
ÿ1

df�s�
ds

ds�����������
t̂ÿ s
p

� 1���
p
p

� t̂
0

df�s�
ds

ds�����������
t̂ÿ s
p � f�0������

pt̂
p : �23�

The fact that the history term is a half-derivative of
the temperature or velocity di�erence between the par-
ticle surface value and the condition in the far ®eld is
of direct interest for the determination of the solution

of the governing equations. This is because the two
integro-di�erential equations that govern the motion
and heat transfer of a particle can be readily trans-

formed into second-order ordinary di�erential
equations by application of suitable fractional-oper-
ators. The determination of these linear operators and

their use are discussed in the next paragraphs.
The following discussion illustrates the natural

appearance of the half-derivative in the solution of the
di�usion equation in a semi-in®nite medium. Again

consider again Eq. (14) governing the perturbed tem-
perature ®eld. This equation can be written as

�
@ 1=2

@t1=2
3
@

@x

��
@ 1=2Y�x, t�
@t1=2

2
@Y�x, t�
@x

�
� Z3

ÿ
Z 2�Y�

�
� 0: �24�

Upon inspection, we see that by considering the inner
bracket Z ��Y� � 0, we not only satisfy the governing
equation (14) but also the associated initial, boundary
conditions, and the particle heat balance (15). On the

other hand, the conjugate equation Z ÿ�Y� � 0 leads
to unbounded temperature values and thus must be
discarded. Since the problem is linear and the solution

unique, solving the problem Z ��Y� � 0 is equivalent
to solving Eq. (14) and its associated limiting con-
ditions.

It is of particular interest that the heat ¯ux is given
directly by the half-derivative of the temperature po-
tential in the planar con®guration. Eq. (21) is readily
obtained from Z ��Y� � 0 when �Tm, r and t̂ are recov-

ered from Y, x and t: In fact, the classical result of
heat ¯ux varying inversely with the square root of time
for a sudden jump in temperature is obtained explicitly

from the last term on the right-hand side of Eq. (23).
Note that any unsteady di�usion problem in a semi-in-
®nite medium that can be reduced to the form of Eqs.

(14)±(17) necessarily presents a fractional scale in time.
This fundamental result has important implications for
the assessment of individual terms in the equations of

motion and heat transfer as the scaling analysis of the
next section shows.

3. The scaling of the unsteady and steady conduction

terms

In this section, we examine the scaling of the
unsteady and steady conduction terms in the heat

transfer equation for a particle that is subjected to a
temperature ®eld that changes sinusoidally with time.
After the initial transient caused by the initial con-

dition of thermal equilibrium, the particle temperature
engages in a behavior that can also be very closely ap-
proximated by a sinusoidal wave. The initial condition

y�0� � 0 does not re¯ect the periodic motion attained
for long times thus the initial transient behavior is
expected. For scaling purposes, it is considered here
that the temperature potential y can also be approxi-

mated by a sinusoidal function with the same fre-
quency of the background ¯uid velocity but with
amplitude `b' and a phase di�erence. In the next sec-

tion, the exact analytical solution of the problem is
presented and the quality of this assumption is
assessed. The history and the quasi-steady conduction

terms are thus given by

CH � 3
���
l
p d1=2y

dt̂
1=2
� 3

���
l
p d1=2

�
sin�ot̂�

�
dt̂

1=2

� 3b
������
ol
p d1=2

�
sin�ot̂�

��
d�ot̂�

�1=2 � O
ÿ
3b

������
ol
p �

, �25�

CS � 3y � 3b sin�ot̂� � O�3b�: �26�
Note that for the history term, the generalized chain
rule for fractional derivatives is used. The chain rule

for a generic di�er-integral operation is given by [10]

dnf
�
g�x��

dxn
� f

�
g�x��

xnG�1ÿ n� �
X1
j�1

�
n
j

�
x jÿn

G�jÿ n� 1� j!

�
Xj
m�1

f m
XYj

k�1

1

Pk!

�
f k

k!

�Pk

,

�27�

where the last summation extends over all combination
of non-negative integer values of Pk such that

Xn
k�1

kPk � n, �28�

and

Xn
k�1

Pk � m: �29�
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For g�x� � ox, the generalized chain rule gives simply

dnf�ox�
dxn

� on dnf�ox��
d�ox��n : �30�

The relative scaling of the two dimensionless contri-
butions for the case of a harmonic perturbation is thus

hCH : CSi � h�ol�1=2 : 1i: �31�
The scaling relation (31) shows that when lo � 1, the
amplitude of the history conduction term is equal to

the amplitude of the steady conduction term. When
the value of the product ao is much smaller than 1,
the quasi-steady conduction term dominates.

Note that the product lo does not depend on the
heat capacity of the particle. The dimensionless num-
ber that governs the scaling of the conduction terms is

S �
������
lo
p

� a

�������
O
am

r
, �32�

where O is the dimensional forcing frequency and am is

the thermal di�usivity of the surrounding medium.

4. Inclusion of radiation e�ects and exact solution of the

equation

Reference [7] describes the formulation of the

unsteady heat transfer problem in a dilute suspension
of small particles including linearized radiation e�ects.
The di�usion process is assumed to occur in the vicinity

of the particles that are many diameters apart from each
other. Radiation e�ects include the exchange between
the free-stream surrounding medium and the cloud of

particles. Since the di�usion problem is linear, and the
radiation problem can be linearized when considering
small particles and relatively small radiation absorption
coe�cients, the radiation e�ect is superimposed to the

di�usion heat transfer problem. Inclusion of the radi-
ation requires the inclusion of an extra heat ¯ux contri-
bution, which, after non-dimensionalization, becomes

Q̂rad, in �
ÿ12aemepshTi3y

km

�
1ÿ tm

ÿ
1ÿ ep

�� , �33�

where for a gray medium tm � 1ÿ em, and for a non-

gray medium, both tm and em are total internal proper-
ties. The di�usion±radiation equation describing the
transient temperature potential for the particles is then

dy
dt̂
� 3

����
l
p

r � t̂
0

�
dy
dt

�
1����������
t̂ÿ t
p dt� 3�1� CR �y

� �lÿ 1�d
~T
�
m

dt̂
: �34�

Fig. 1. Relative contribution of the (a) history, (b) quasi-

steady conduction, and (c) radiation heat transfer ¯uxes for

di�erent values of CR: The lines correspond to the scaling

analysis of Section 3, and the discrete points correspond to

time-averaged values of the full solution for the ®rst 1.5

periods. The discrete values were calculated using: (i) o � 1,

l � 0:01, CR � 0 and 1; (ii) o � 10, l � 0:1, CR � 0 and 1;

and (iii) o � 100, l � 0:1, CR � 0 and 1.
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The dimensionless radiation coe�cient CR is de®ned as
[7]

CR � 4aemepshTi3
km

�
1ÿ tm

ÿ
1ÿ ep

�� : �35�

This coe�cient is a measure of the contribution of the

radiation mode to the temperature behavior of the par-
ticles and has the meaning of a radiation Nusselt number.
Radiation e�ects can be neglected if CR � 1: However,

in many engineering applications, the order of magnitude
of CR mayber1, implying that radiation can contribute
dominantly to the quasi-steady conduction term in Eq.

(34). The restriction on the absorption coe�cient for
which the approximations made in the radiation model-
ing are valid can be evaluated in terms of the CR coe�-
cient. In terms of CR, kam must satisfy kam � 4l=CRa for

the quasi-steady radiation formulation to be valid [7].
Fig. 1 shows the scaling analysis of Section 3 in

graphic form. The various curves correspond to the in-

dividual contributions (quasi-steady conduction, his-
tory conduction and quasi-steady radiation) for three
di�erent values of the radiation coe�cient CR: Fig. 1(a)
shows the history term contribution predicted by the
scaling analysis. Figs. 1(b) and (c) represent the quasi-
steady conduction and the radiation contributions, re-

spectively. Note that for the case of CR equal to 1, the
radiation and the quasi-steady conduction contri-
butions are coincidental. The relative contributions are
plotted as functions of the square of the scaling num-

ber S. Because of the square root decay of the history
term with S, the history term contribution is relevant
even for values of S 2 of the order of 0.01.

We can also de®ne a new scaling number that
includes quasi-steady, linearized radiation e�ects:

SR �
������
lo
p

�1� CR � �
a

�1� CR �

�������
O
am

r
: �36�

Clearly, the importance of the history term increases
linearly with increasing particle radius for negligible

radiation. For values of CR much greater than 1, the
in¯uence of the history term becomes independent of
the radius of the particle. However, this condition is
not likely to be observed, since the thermal conduc-

tivity and di�usivity of gases increase with tempera-
ture. Very large values of CR are not likely to occur in
real systems.

We now turn to the solution of Eq. (34), which can
be obtained analytically following the method outlined
in [7]. In order to proceed, we de®ne the following con-

jugate linear operators C2 comprised of three terms,
one of them containing a Riemann±Liouville±Weyl
half-derivative:

C2 � d

dt̂
2H

���
p
p d1=2

d1=2 t̂
�D: �37�

The left-hand side of Eq. (34) is then simply C��y�t̂��:
The initial step in the solution procedure consists of
applying the conjugate fractional-di�erential operator
Cÿ to Eq. (34). The objective of this procedure is to

stretch the half-derivative associated with the history
term in that equation. Application of Cÿ to Eq. (34)

Cÿ
�
C�

�
y�t̂�

�	
� UCÿ

(
d ~T
�
m

dt̂

)
�38�

results in

d 2y

dt̂
2
� �2DÿH 2p�dy

dt̂
�D 2y

� ÿUd 2 ~T
�
m

dt̂
2
ÿDU

d ~T
�
m

dt̂

�HU

 
1��̂
t
p d ~T

�
m

dt̂

�����
t̂�0
�
� t̂
0

d 2 ~T
�
m

dt 2
dt����������
t̂ÿ t
p

!
: �39�

Eq. (39) can now be solved exactly. In order to solve
Eq. (39), the nature of the solution has to be analyzed.

There is a critical value of l for which the functional
form of the solution changes character. This value is
lc � 4�1� CR�=3, and corresponds to the change in

sign of the discriminant D � H 2p�H 2pÿ 4D� of the
characteristic equation associated with Eq. (39). Three
possible cases exist: l > lc, l � lc, and l < lc: The

®rst two cases are of limited practical interest, since
they imply a suspension of particles with in®nite con-
ductivity (the temperature of the particles is assumed

to be uniform throughout their volumes) but with den-
sity smaller than the density of the surrounding me-
dium, since the value of the speci®c heat capacities of
solids, liquids and gases are of the same order of mag-

nitude. Because of this implication, the cases related to
values of l greater than or equal to the critical value
will not be considered here.

The general solution of Eq. (39) for l < lc is found,
through variation of parameters, to be [7]:

y�t̂� � eÿat̂

b

8>>>>>>>>>><>>>>>>>>>>:

�Ud ~Tm

dt̂

�����
t̂�0

sin
ÿ
bt̂
�

ÿsin
ÿ
bt̂
� � t̂

0

eat cos�bt� rhs�t� dt

�cos
ÿ
bt̂
� � t̂

0

eat sin�bt� rhs�t� dt

9>>>>>>>>>>=>>>>>>>>>>;
, �40�

where rhs�t̂� is
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rhs�t̂� � HU

 � t̂
0

d 2 ~T
�
m

dt 2
dt����������
t̂ÿ t
p � 1��̂

t
p d ~T

�
m

dt̂

�����
t̂�0

!

ÿU
d 2 ~T

�
m

dt̂
2
ÿDU

d ~T
�
m

dt̂
, �41�

and the coe�cients a and b are de®ned as

a � DÿH 2p=2, �42�

b �
������
jDj

p
=2: �43�

In order to obtain Eq. (40), the following initial con-
ditions were used:

y�0� � 0, �44�

dy
dt̂

����
t̂�0
� U

d ~T
�
m

dt̂

�����
t̂�0
: �45�

The ®rst initial condition is due to the assumption of

initial thermal equilibrium between the particles and
the surrounding medium. The second condition is de-
rived directly from Eq. (34). Note that the initial con-

dition (44) can be relaxed by consideration of the
Heavyside solution for the associate problem (Eqs.
(14) and (15)).
Eq. (40) is thus the general solution for the dimen-

sionless temperature potential. By adding to it the
value of the unperturbed temperature of the medium
~T
�
m�t̂�, the dimensionless temperature of the particle is

found. For the case of harmonic heating, and to be
able to linearize the radiation term, the dimensionless
background temperature is given by ~T

�
m�t̂� �

1� x sin�ot̂�, where x� 1: The term rhs�t̂� in this case
is

rhsH�t̂� � xoU

2664�o sin�ot̂� ÿD cos�ot̂�

� H��̂
t
p ÿ oH

� t̂
0

sin�ot� dt����������
t̂ÿ t
p

3775: �46�

The dimensionless temperature potential is then given
by

yH�t̂� � eÿat̂

b

8>>>>>>><>>>>>>>:

�Uxo sin
ÿ
bt̂
�

ÿsin
ÿ
bt̂
� � t̂

0

eat cos�bt� rhsH�t� dt

�cos
ÿ
bt̂
� � t̂

0

eat sin�bt� rhsH�t� dt

9>>>>>>>=>>>>>>>;
: �47�

Solution (47) is used to validate the scaling analysis of
Section 3. The discrete points in Fig. 1(a) represent
speci®c cases where the amplitude of the heat ¯uxes

were averaged over the ®rst 1.5 periods. The results
from the exact solution validate the approximate scale

analysis even in the presence of the initial transient for
cases where phase di�erences between the heat ¯uxes
are not too accentuated. The characteristic time chosen

for non-dimensionalization of the equation rpcpa
2=km

is roughly the decay time for the transient caused by
the initial condition y�0� � 0, thus the periodic be-

Fig. 2. History and quasi-steady heat ¯uxes calculated from

the analytical solution for o � 10, and a � 0:001 and 0.1. (a)

CR � 0; (b) CR � 1:
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havior is expected to be attained during the ®rst
period. Fig. 2 shows the behavior of the history and

quasi-steady di�usion heat ¯uxes for the conditions
indicated.

5. Energy equation for a generic temperature ®eld

Consider now a small particle moving through a
non-uniform temperature ®eld. Assuming a small Bi
number for the process, the uniform but time-depen-

dent temperature of the particle is given by

mpcp

dTp

dt
� ÿ

�
Asp

q�n dA

� ÿ
�
Asp

Äq�n dAÿ
�
Asp

Åq�n dA, �48�

where n is the unit vector perpendicular to the surface
of the particle Asp and q is the total heat ¯ux at the

interface between the particle and the ¯uid. As in the
previous sections, the total heat ¯ux can be divided
into two parts, the perturbed and the unperturbed heat

¯ux contributions. The unperturbed temperature
satis®es the energy equation for the continuous phase
[1]

ÿ
�
Asp

Äq � n dA � rmcm
4pa3

3

 
@Tm

@ t
� ui

@ ~Tm

@x i

!

� rmcm
4pa3

3

D ~Tm

Dt

����
x�t�

, �49�

where the subscript m indicates properties of the back-
ground medium and D=Dt is a substantial derivative
following a ¯uid particle at the position of the rigid

particle x(t ).
Note that in Ref. [1], the term containing the sub-

stantial derivative was identi®ed as an analog to the

virtual mass term in the equation of motion derived by
Maxey and Riley [2]. This association is not correct
since the term described in Eq. (49) is the heat transfer

analog to the so-called pressure term in the equation of
motion. The terminology ``pressure term'' is due to the
fact that, for inviscid ¯ows, the acceleration terms are
compensated by the pressure distribution around the

particle only. The term in the right-hand side of Eq.
(49) is more accurately named the unperturbed Lagran-
gian transient term. In the heat transfer formulation,

there is no virtual mass term since there is no term
equivalent to the pressure term. Furthermore, the heat
transfer from the surface of the particle is assumed to

be spherically symmetric for in®nitesimal PeÂ clet num-
bers.
In order to determine the contribution from the per-

turbed temperature ®eld, the unperturbed ¯uid is
expanded as a quadratic function of the coordinate

system moving with the particle [1,2,15]. De®ning the
relative positioning vector as z � Xÿ x�t�, where X is
the Eulerian reference frame ®xed in time, the unper-

turbed temperature ®eld is expanded in a McLaurin
series

~Tm�z, t� � ~Tm�x, t�

� zi
@ ~Tm

@x i

�����
z4 0

�1
2
zizj

@ 2 ~Tm

@x i @x j

�����
z4 0

� � � � �50�

The perturbed temperature ®eld is then taken as

�Tm�z, t� � Tp�t� ÿ ~Tm�z, t�, �51�

which gives

�Tm�z, t� � Tp�t� ÿ ~Tm�x, t�

ÿ zi
@ ~Tm

@x i

�����
z4 0

ÿ1
2
zizj

@ 2 ~Tm

@x i @x j

�����
z4 0

: �52�

In order to determine the perturbed heat ¯ux Åq, it

helps noticing that since the surface of the particle is
assumed spherical, the third term on the right-hand
side of Eq. (52) does not yield a net contribution. This
is also true for the non-diagonal terms in the fourth

term of the same equation [1]. Through direct appli-
cation of the inner bracket de®ned in Eq. (24),
Z ��Y� � 0, or through application of Duhamel's

Superposition Theorem, the heat ¯ux from the per-
turbed ®eld is given by

Åq � ÿkm

�Tm�z, t�
a

ÿ km

�t
0

�
d �Tm�z, t�

dt

�
1���������������������

pam�tÿ t�
p dt, �53�

where d=dt now represents a Lagrangian derivative fol-
lowing the particle. The temperature of the particle in
a non-uniform temperature ®eld is then governed by

mpcp

dTp

dt
� rmcm

4pa3

3

D ~Tm

Dt

����
x�t�
ÿ
�
Asp

Åq � n dA: �54�

Integration of the heat ¯ux (54) over the surface of the
particle gives
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�
Asp

Åq � n dA � kmAsp

a

�
Tp�t� ÿ ~Tm�x, t� ÿ a 2

6
r 2 ~Tmjz4 0

�

� kmAsp

�t
0

d
dt

n
Tp�t� ÿ ~Tm�x, t� ÿ a 2

6 r 2 ~Tmjz4 0

o
���������������������
pam�tÿ t�

p dt:

�55�
Combination of Eqs. (54) and (55) yields the energy

equation for a particle moving in a non-uniform tem-
perature ®eld in the limit of in®nitesimal Pe and Bi
numbers:

mpcp

dTp

dt
� rmcm

4pa3

3

D ~Tm

Dt

����
x�t�
ÿkmAsp

a

�
Tp�t�

ÿ ~Tm�x, t� ÿ a 2

6
r 2 ~Tmjz4 0

�

ÿ kmAsp

�t
0

d
dt

n
Tp�t� ÿ ~Tm�x, t�

o
���������������������
pam�tÿ t�

p dt

� kmAsp

�t
0

d
dt

n
a 2

6 r 2 ~Tmjz4 0

o
���������������������
pam�tÿ t�

p dt: �56�

Eq. (56) is the energy equation ®rst derived by Michae-

lides and Feng [1]. The derivation of Eq. (56) presented
above shows explicitly that the FaxeÂ n corrections (the
terms in the Laplacian of the background temperature

®eld) are contributions originated from the perturbed
®eld through consideration of a McLaurin series
expansion on z for the unperturbed ®eld. Because of

this, the FaxeÂ n corrections must be included in every
term associated with the temperature potential between
the particle and the unperturbed ®eld. This conclusion
is in contrast with the heuristic argument used by

Tchen [6] in deriving his equation of motion for non-
uniform velocity ®elds. In Ref. [6], the FaxeÂ n correc-
tions are omitted in several terms, because the e�ect of

non-uniformity was simply added in an ad hoc manner
to the convective contribution.
Burgers [15] noted that, as a second-order approxi-

mation, a small particle ``sees'' the non-uniform ¯ow
around it as a modi®ed ¯ow ®eld given by [16]:

Äu�z, t� � Äu�x, t� � a 2

6
r 2 Äu�x, t�: �57�

Analogously, one can argue that a particle moving in a
non-uniform temperature ®eld sees the background
temperature ®eld as

~Tm�z, t� � ~Tm�x, t� � a 2

6
r 2 ~Tm�x, t�: �58�

Combination of Eqs. (53) and (58) directly yields Eq.
(56).

6. Concluding remarks

This work presents several contributions to the

understanding of the unsteady heat transfer to small

particles in the limit of in®nitesimal Pe numbers. First,

the governing integro-di�erential equation is derived in

Section 2 by two alternative and previously

unexploited methods. Then, a scaling analysis that

makes use of the new derivation methods is carried on

in Section 3. The analytical solution of the governing

equation is compared with the scaling analysis for a

few selected cases in Section 4. Finally, the energy

equation for a particle moving in non-uniform back-

ground ®eld is re-derived and analyzed under the light

of the methods described in Section 2.

The derivations in Section 2 are entirely performed

in physical space, without resorting to transformed-

space algebra. In order to accomplish this, we start by

making use of Duhamel's Superposition Theorem, and

later, we show the origin of the history kernel using

Fractional Calculus. To the best of our knowledge,

there is no previous publication that relates Duhamel's

Theorem explicitly to the history integral nor there is

any work using Fractional Calculus that completely

dispenses the use of Laplace transformations as has

been done here. The novelty in the present derivations

is the fact that the governing equations are never inte-

gral-transformed. The derivation in physical-space

avoids transformed-space algebra, which has been re-

sponsible for algebraic mistakes and physical misin-

terpretations performed by other authors in previous

works. A few examples follow:

(a) The solution for the temperature distribution in

a slab, Eq. (2) on page 104 of [17], does not satisfy

either of the boundary conditions on page 102 of

the same book. This inconsistency is due to a misin-

terpretation of the inverse of the integral transform

of the boundary conditions. The di�culty in de®n-

ing a consistent inversion procedure for all kinds of

initial and boundary conditions has been the subject

of many studies [18±20]. In our derivation, there is

no need for an inversion procedure since the gov-

erning equation is solved in physical space.

(b) In the original derivation for the motion of a

small particle in a non-uniform velocity ®eld per-

formed by Maxey and Riley [2], the contribution

resulting from the integration from ÿ1 to 0 in the

history term was left out of the resulting equation.

This discrepancy, which was later corrected (see,

e.g. [21]), aroused because Laplace transforms were

incorrectly de®ned in the interval �0,1� and not in

the interval �ÿ1,1). Eq. (25) shows the ``negative-

time'' contribution explicitly as a characteristic of

the half-derivative operator. There is no need to

include extra terms in the operator and the inverse
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square-root dependence is readily obtained in our

formulation.

(c) The kernel of the history term in the present

work is often associated with spherically symmetric

problems, and it sometimes referred to as ``spheri-

cally symmetric kernel'' (see, e.g. [22]). The form of

the kernel of the history term is, however, not re-

lated to a particular geometric con®guration, but to

the fact that di�usion occurs in one dimension only

in the coordinate system in question. The kernel of

the history term is the same for the unsteady heat

di�usion in a planar slab (this follows clearly from

Eq. (24)). It is the analog term to the quasi-steady

Stokes drag (the second term in the right-hand side

of Eq. (21)) that is particular of the spherical sym-

metry of the problem. This is very clear in our deri-

vation, but is not so clear in the usual Laplace-

transform derivation.

The scaling analysis in Section 3 yields the critical

frequency above which the history term becomes domi-

nant over the quasi-steady term. The scaling analysis

shows that when radiation e�ects are not relevant, and

the scaling number S � a 2O=am is of the order of 0.01,

the history term contribution accounts for roughly

10% of the total conduction term. For a value of

S00:1, the contribution of the history term is approxi-

mately 20%; and for S01, the history term contri-

bution is equal to the quasi-steady conduction term

contribution. The simpli®ed scaling analysis in Section

3 is accurate as long as phase-di�erences are not of

major relevance for the heat ¯uxes in question. The ac-

curacy of the scaling analysis, for situations where

there is not a signi®cant e�ect of phase shift between

the two quasi-steady and the unsteady heat ¯uxes, is

shown in Fig. 1(a).
Consider, for example, a harmonic temperature ®eld

varying in time with an angular frequency O: The
angular frequency for which history e�ects become
dominant in the heat transfer case is given by Oc �
am�1� CR� 2=a 2, where am is the thermal di�usivity of
the medium, a is the radius of the particles and CR is

the dimensionless radiation coe�cient de®ned in Eq.
(38). Unsteady e�ects become dominant over the

quasi-steady di�usion and radiation terms for forcing
frequency higher than Oc: In combustion environ-
ments, the steady-state conduction and radiation

e�ects dominate over the history contribution, unless
very high-frequency temperature ¯uctuations are

observed.
As a numerical example of relevance, consider a

cloud of particles in air with average diameter of 20 m.
At moderate temperatures � ~Tm1500 K), radiation

e�ects are negligible �CR � 1), and Oc15� 105 rad/s.
This value of Oc is greater than the oscillating frequen-
cies that are commonly found in fully-turbulent en-

vironments. As temperature increases, the value of am

and CR increase, thus decreasing the importance of his-

tory e�ects. Larger particles are more a�ected by the
unsteady evolving pro®le, but the condition of in®ni-

tesimal Pe number necessary to derive the results
obtained in this work are not satis®ed for larger par-
ticles under usual conditions. However, in micro-grav-

ity combustion environments, convective e�ects are
diminished, thus making possible for history e�ects to

be dominant over quasi-steady ones when particles of
millimetric dimensions �ar1 mm) are considered.

In liquid±solid suspensions, radiation e�ects are neg-

Fig. 3. Approximate behavior of the scaling number SR with respect to the ratio B � ZT=a:
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ligible and the e�ect of the evolving temperature pro-
®le around the particles is important even at low fre-

quencies. Consider, for example, a particle with an
average diameter of 200 m suspended in water. For this
case, the value of Oc is approximately 10 rad/s, a tem-

perature frequency easily attained in turbulent ¯ows.
In fact, the Kolmogorov thermal di�usion time scale
can be approximated as Oÿ1, so that the Kolmogorov

thermal length scale ZT is approximately given by
am=O: This implies that S 2

R11=B 2�1� CR�, where B �
ZT=a: Thus, for a liquid±solid suspension where

CR40, the history contribution increases linearly as B
decreases. However, the assumptions used in the deri-
vation of Eqs. (21) and (22) cannot be satis®ed for
BR10 because of the non-uniformity of the free-stream

condition when B0a: The formulation breaks down as
B4a and conclusions should not be drawn for these
conditions.

For gaseous ¯ows where Pr � n=am41, the Kolmo-
gorov length scale is of the same order of the Kolmo-
gorov thermal length scale, so that ZK1ZT: This

implies that in gas±solid ¯ows, the unsteady contri-
bution increases as the Kolmogorov length scale
approaches the scale of the radius of the particle,

unless radiation heat transfer is the dominant mode.
The approximate behavior of the scaling number SR is
depicted in Fig. 3. Note that when B is of the order of
10±100, the unsteady contribution is still relevant in

the absence of strong radiation.
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